Wann ist Schluss mit dem Hype um Data Science?

Jeder will Data Scientists haben. Hochschulen bieten Studiengänge an. Coursera & Co überschlagen sich mit Data Science-Angeboten. Daten sind das neue Öl. Ohne Daten und die sie zu Gold machenden Data Scientists sei die Zukunft düster, da sind sich alle einig. Selbst wenn man keine spannenden Daten hat, so kann ein Data Scientist vielleicht aus dem Wenigen schon Goldstaub zaubern. Also wird ein Bedarf an Data Scientists gemeldet, ohne überhaupt zu wissen, ob man sie überhaupt beschäftigen kann. Auf dem Hype Cycle sind wir immer noch nicht ganz oben angekommen, aber es wird nicht mehr lange dauern, bis es runter geht ins Tal der Ernüchterung (und dann zum Plateau der Produktivität. Schuld daran haben mehrere Missverständnisse.

Es gibt keine allgemeingültige Definition von Data Science

Somit kann sich jeder Data Scientist nennen, wer das gerne möchte.  Und man kann auch einen Kurs oder einen Studiengang danach betiteln, weil es gerade schick ist. Meiner Meinung nach passiert genau das momentan zu häufig.

Für mich ist Data Science das Zusammenspiel aus Data Mining, Statistik und Machine Learning. Und genau das biete ich in meinen Kursen an. Und damit wir uns gleich richtig verstehen: Ein Semester ist dafür viel zu wenig. Und deshalb nennen wir das auch nicht mal Data Science, sondern Data Analytics oder Ähnliches. Wir schnuppern rein in Data Science. Aber in den 60 Stunden im Semester entwickle ich keinen neuen Data Scientist.

Im Prinzip müsste man meiner Meinung nach erst einmal mindestens ein Semester Statistik unterrichten, bevor es weiter geht. Dann eine Programmiersprache richtig lernen, sei es R oder Python. Und dann würde man mit Machine Learning beginnen. Dazwischen immer mal wieder erklären, wie man mit Linux/Unix umgeht. Datenbanken. Cloud-Technologie. Damit kann man sicherlich ein ganzes Studium füllen.

Oft ist es aber nur eine Einführung in Python mit etwas scikit. Aber, wie oben schon beschrieben, das ist egal, denn der Begriff ist eh nicht geschützt. Und es merkt auch kaum jemand, denn wer soll das denn beurteilen?

Es gibt noch keine ausreichende Ausbildung

Vor kurzem habe ich mal in einen Data Science-Kurs auf Udemy reingeschnuppert (der übrigens immer nur noch wenige Stunden gerade mal ein paar Euro kostet). Der junge Mann in seinem Gamer-Stuhl konnte gut reden, aber in die Tiefe konnte er nicht gehen. Wobei, es kommt darauf an, wie man Tiefe definiert. Der inhaltliche Tiefpunkt war für mich erreicht, als er sagte, dass man gewisse Dinge mathematisch nicht verstehen muss, zum Beispiel ob man durch n oder durch n-1 teilt. Wow.

Dann habe ich auch schon mehrere Informatik- o.ä. Studierende von der Uni Hamburg etc bei mir gehabt. Abgesehen davon, dass ihnen grundlegende Kenntnisse fehlen (“Was ist eine CSV-Datei?”), haben sie zwar ein paar Techniken gelernt, die sie auch brav in die Bewerbung schreiben (“Erfahrung in ML”), aber richtig verstanden haben sie nicht, was sie da tun. So wird k-means gerne auf alles geballert, auch wenn es keine numerischen Daten sind (die kann man ja einfach umwandeln, dann sind sie ja numerisch). Dass das selten Sinn ergibt, wenn man euklidische Distanzen berechnet, nun ja. Wenn man nur einen Hammer hat, dann sieht alles aus wie ein Nagel.

Wenn aber die Ausbildung suboptimal ist, wie sollen die Data Scientists dann Gold aus Daten generieren? Für den wirklich krassen Kram wird eine solche Ausbildung nicht ausreichen. Und entweder wird dann Mist geliefert oder das Projekt geht nie zu Ende. Das erinnert mich ein bisschen an die New Economy als plötzlich jeder HTML-Seiten bauen konnte. Nur diejenigen, die mehr als HTML konnten, haben nach dem Crash noch Chancen auf einen Job gehabt. Und zu viele Läden gingen pleite, weil sie einfach nur schwach ausgebildete Leute eingestellt hatten.

Nicht jedes Problem benötigt einen Data Scientist

Ich behaupte mal ganz dreist, dass sich viele Probleme auch ohne einen Data Scientist nach meiner obigen Definition lösen lassen. Tatsächlich sind viele Methoden bereits in der Statistik gut behandelt worden, von der Regressionsanalyse bis zur Bayesian Inferenz. Auch Klassifikation und Clustering gab es lange vor Data Science. Support Vector Machines sind auch schon etwas älter. Das einzig Neue ist, dass es viel mehr Bibliotheken gibt, die jeder anwenden kann. Aber man muss nicht sofort an Data Science denken, wenn es um diese Themen geht. Denn da zahlt man gleich einen Hype-Bonus mit.

Was wenn nicht Data Science wird wichtig?

Natürlich wird die Arbeit mit Daten in Zukunft nicht weniger wichtig werden. Ganz im Gegenteil. Aber ich befürchte, dass der gegenwärtige Hype diesem neuen Gewächs nicht gut tut. Da es dort jede Menge Geld zu verdienen gibt, stürzen sich auch Talente darauf, deren bisheriger Fokus nicht unbedingt auf Mathematik-nahen Fächern lag. Einen Udemy-Kurs kann jeder irgendwie abschließen. Aber die Qualität ist nicht bei jedem Kurs gleich gut. Und dementsprechend ist diese Art der Ausbildung sowie auch das plumpe Lernen von Methoden an der Uni nicht hilfreich, Data Science nach vorne zu treiben. Dadurch wird Data Science eher enttäuschen und in das Tal der Enttäuschung abrutschen. Denn es werden nicht alle Erwartungen erfüllt werden können.

Wir benötigen zum einen eine Definition, was Data Science ist, und danach eine Definition dessen, was man als Data Scientist tatsächlich können muss. Ansonsten ist der Hype wegen Erfolglosigkeit bald wieder vorbei.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.