Wird mein Content gelesen? Sichtbarkeit von Elementen messen!

Im September 2017 hatte ich noch darüber geschrieben, dass die Scrolltiefe ein besserer Indikator dafür wäre, ob ein Inhalt gelesen wurde als die reine Sitzungsdauer, die eh Quatsch ist. Einen Monat später veröffentlichte Google dann eine neue Funktion im Google Tag Manager, einen Trigger für die Sichtbarkeit von Elementen (in der deutschen Version der Release Notes fehlte der Hinweis). Damit lassen sich einige Nachteile des Scrolltiefen-Ansatzes kompensieren, vor allem die Einschränkung, dass nicht jede Seite gleich lang ist und “75% gelesen” nicht immer bedeuten muss, dass der Inhalt auch bis zum Ende gelesen wurde (75% wurde deswegen gewählt, weil viele Seiten einen immensen Footer haben und die Nutzer daher nicht zu 100% runterscrollen). Eine Seite bei mir hat so viele Kommentare, dass sie mehr als die Hälfte des Inhalts ausmachen.Continue reading

Filed under: Data ScienceTagged with: , , , , ,

SEO-Monitoring mit R, AWS und Shiny

Shiny App SEO Reporting

Dies ist der vorläufig letzte Teil der Serie über SEO mit R und AWS. Im ersten Teil hatten wir die AWS-Instanz mit RStudio vorbereitet, im zweiten Teil eine kleine SEO-Analyse durchgeführt, im dritten Teil ging es um die Erstellung eines Sichtbarkeitsindexes und eines “actionable Reportings”. In diesem Teil geht es darum, dass es selbst dem hartgesottensten Data Scientist zu anstrengend ist, die einzelnen Skripte täglich durch RStudio laufen zu lassen. Das SEO Monitoring soll also über eine ansprechende Oberfläche laufen.Continue reading

Filed under: Data Science, SEOTagged with: , , ,

Ein eigener Sichtbarkeitsindex mit R und AWS

In der dritten Folge über Suchmaschinenoptimierung mit R und AWS geht es um das Erstellen eines eigenen Sichtbarkeitsindex, um eine aggregierte Übersicht über das Ranking vieler Keywords zu erhalten. Im ersten Teil hatten wir uns angeschaut, wie man mit R und einer AWS Free Tier EC2-Instanz automatisiert Daten aus der Webmaster Console zieht, im zweiten Teil ging es um erste Analysen anhand von Klickraten auf Positionen.Continue reading

Filed under: Data Science, SEOTagged with: , ,

Warum die durchschnittliche Sitzungsdauer in Analytics kompletter Quatsch ist

Ich beschäftige mich seit über 20 Jahren mit Webanalyse, angefangen mit Serverlogfiles und heute mit zum Teil abgefahrenen Implementierungen von Tracking-Systemen. Die Möglichkeiten werden immer besser, aber nicht alles ist besser geworden. Denn ein Aberglaube ist einfach nicht totzukriegen, nämlich dass Time on Site oder die “durchschnittliche Sitzungsdauer” eine gute Metrik ist, beziehungsweise dass die angegebenen Werte überhaupt stimmen, Darum hier einmal schwarz auf weiß: In einer Standardimplementierung wird die Time on Site nicht richtig gemessen, egal ob in Adobe Analytics oder Google Analytics oder Piwik oder sonstwas. Continue reading

Filed under: Data ScienceTagged with: , , , ,

“Actionable” SEO-Reporting mit R und AWS

In dem ersten Teil ging es darum, wie mit R und einer zunächst kostenlosen AWS-Instanz ein automatisiertes SEO-Monitoring erstellt wird. Dabei wird die Webmaster Console per API jeden Tag abgefragt, und die Daten werden in eine Datenbank geschrieben. Das Datensammeln allein bringt natürlich nichts, irgendwas sollten wir damit auch anfangen, und mein Mantra, das jeder Student in meinen Veranstaltungen mehrmals pro Tag hört, ist “Daten – Information – Aktion”. In den meisten Abhandlungen steht Wissen an der Stelle von Aktion, denn die Verarbeitung von Informationen erst schafft Wissen. Im Bereich der Datenanalyse oder sogar Data Science aber geht es häufiger darum, nicht nur zu wissen, sondern mit dem Wissen auch etwas zu tun, idealerweise zu wissen, was zu tun ist. Der Grund, warum die meisten Reportings nicht gelesen werden, ist in der Regel, dass keine Aktion abgeleitet werden kann. 5 Likes mehr diese Woche. Ja und? Was mache ich jetzt morgen anders? Wir wollen also nicht einfach nur ein SEO-Reporting bauen, sondern ein SEO-Reporting erstellen, das uns sagt, wo etwas zu tun ist und was man tun sollte. “Actionable” heißt es auf Neudeutsch, und eine richtig schöne Übersetzung gibt es tatsächlich nicht im Deutschen. “Handlungsrelevant”? Ist irgendwie nicht das Gleiche. Leben wir also zunächst mit diesem Begriff.

Continue reading

Filed under: SEOTagged with: , ,

Erfahrungen mit tado: Idee gut, Rest suboptimal

Zuletzt aktualisiert am 14.3.2018! Gleich vorab: Ich wünschte, ich könnte mich den Begeisterungsstürmen für tado anschließen, schließlich habe ich tado ausgesucht, weil ich wirklich glaube, dass das System mein Heizungs-Problem lösen kann. Bisher aber sind meine Erfahrungen mit tado weniger gut, und das liegt nach einigen Wochen am System selbst und auch an der Hotline sowie den suboptimalen Hilfetexten. Ich hoffe, dass dieser Bericht helfen kann, eigene schlechte Erfahrungen mit tado zu verhindern.Continue reading

Filed under: GadgetsTagged with: , ,

Kostenloses und automatisiertes SEO-Monitoring mit R und AWS

SEO-Monitoring mit R und AWSLangsam hält R Einzug in die Welt der Suchmaschinenoptimierung, und auch wenn R am Anfang etwas verwirrend sein mag (funktionale Programmierung anstatt prozedural), so kann man mit wenigen Zeilen Code coole Sachen bauen. Als Beispiel soll hier ein kostenloses SEO-Monitoring dienen, das natürlich kein bisschen mit Sistrix und Co mithalten kann, aber wenn man nur seine eigenen Rankings verfolgen will, dann ist dies eine tolle und vor allem kostenlose Lösung.Continue reading

Filed under: Data ScienceTagged with: , ,

mv: argument list too long – Millionen von Dateien verarbeiten

Aufgrund meiner Vergesslichkeit hatte ein cron job mehr als 3 Millionen Dateien in einem Verzeichnis angesammelt, die ich nun verarbeiten wollte. Damit mein Skript nicht tagelang daran arbeitet (mehr 60 GB an Daten!), sollten die Dateien in kleinere Häppchen verteilt werden. Leider kam mv nicht damit klar, es beschwerte sich mit “argument list too long”. Die Abhilfe schafft eine Kombination von Kommandozeilen-Befehlen:

find ordner1/ -name ‘2017-07*’ -exec mv {} ordner2 \;

Filed under: Data ScienceTagged with: , , , , ,