Standardfehler und Konfidenzintervall

Wie in der Population gibt es auch in einer Stichprobe Abweichungen vom Mittelwert. Die Streuung um den Mittelwert wird mit der Standardabweichung angegeben, und das gilt auch für eine Stichprobe. Nun haben wir gerade schon die Stichprobenverteilung kennen gelernt, und die Standardabweichung der Mittelwertverteilung (Stichprobenverteilung des Mittelwerts) wird als Standardfehler des Mittels bezeichnet. Das hat nichts mit Fehlern zu tun, es wird damit lediglich die Genauigkeit der Schätzung des Mittelwerts beziffert. Denn tatsächlich wollen wir wissen, wie nah wir wahrscheinlich mit dem Mittelwert unseres Stichprobe an dem tatsächlichen Mittelwert der Population dran sind.

Allerdings haben wir nur theoretisch unendlich viele Stichproben gezogen. In der Realität haben wir meistens nur eine gezogen. Daher können wir den Standardfehler nur schätzen. Dies wird getan, indem die Standardabweichung der Stichprobe durch die Wurzel der Stichprobengröße teilt. Je größer die Stichprobe, desto geringer der Standardfehler.

Das Konfidenzintervall

Der Standardfehler wird benötigt, um das Konfidenzintervall zu bestimmen. Vereinfacht gesagt kann der Standardfehler einfach mit 1.96 multipliziert werden, wenn ein Konfidenzniveau von 95% verwendet wird (die Zahlen sind schon aus den Standardabweichungen bekannt. Das Konfidenzintervall ist also zwischen dem Stichprobenmittelwert minus Standardfehler * 1.96 und Stichprobenmittelwert plus Standardfehler.