Ein eigener Sichtbarkeitsindex mit R und AWS

In der dritten Folge über Suchmaschinenoptimierung mit R und AWS geht es um das Erstellen eines eigenen Sichtbarkeitsindex, um eine aggregierte Übersicht über das Ranking vieler Keywords zu erhalten. Im ersten Teil hatten wir uns angeschaut, wie man mit R und einer AWS Free Tier EC2-Instanz automatisiert Daten aus der Webmaster Console zieht, im zweiten Teil ging es um erste Analysen anhand von Klickraten auf Positionen.

Was macht ein Sichtbarkeitsindex?

Dazu schauen wir erst einmal, was ein Sichtbarkeitsindex überhaupt leisten soll. Bei Sistrix ist der Sichtbarkeitsindex unabhängig von saisonalen Effekten, was ganz charmant ist, denn so weiß man schon im Sommer, ob man mit winterreifen.de einen Blumentopf gewinnen kann. Sowas kann zum Beispiel dadurch gelöst werden, dass man die durchschnittliche Anzahl von Suchen aus dem AdWords Keyword Planner nutzt. Dumm nur, dass dieses Tool nur noch dann einigermaßen nützliche Werte ausspuckt, wenn man auch ausreichend Budget in Google AdWords ausgibt. Dieser Ansatz fällt schon mal flach, denn wir wollen unser Monitoring so günstig wie möglich, bestenfalls kostenlos halten.

Sistrix hat den Nachteil, dass es a) für Studenten, die meine SEO-Kurse besuchen, trotz des günstigen Preises immer noch zu teuer ist und b) meine kleinen Nischengeschichten eben nicht immer vorhanden sind in der Sistrix-Keyword-Datenbank. Sistrix und Co. sind vor allem dann spannend, wenn man eine Seite mit anderen Seiten vergleichen will (idealerweise aus der gleichen Industrie mit dem gleichen Portfolio). Eine abstrakte Zahl wie ein Sichtbarkeitsindex von 2 ist ansonsten ziemlich sinnfrei. Diese Zahl ergibt nur dann Sinn, wenn ich sie in Bezug zu anderen Webseiten setzen kann und/oder wenn ich daraus die Entwicklung meiner eigenen Webseiten-Rankings im Zeitverlauf verfolgen kann. Die Zahl selbst ist dabei immer noch nicht aussagekräftig, denn in was für einer Metrik wird gemessen? Wenn ich 2 Kilo abnehme, dann ist die Metrik klar. Aber 0,002 SI abnehmen? Wie viele Besucher sind das?

Wir wollen uns einen Index bauen, der es uns ermöglicht zu schauen, ob sich unser Ranking über sehr viele Keywords im Zeitverlauf verändert. Wie sich unsere Marktbegleiter entwickeln, das ließe sich nur ablesen, wenn man Google scrapte, und das ist nicht erlaubt.

Sichtbarkeitsindex auf Basis der Webmaster Console

Offensichtlich ist es besser, mit einem Suchbegriff auf Platz 3 zu ranken, der 100 Mal am Tag gesucht wird als für einen Suchbegriff auf Platz 1, der nur 2 Mal am Tag gesucht wird. Die Anzahl der Suchen sollte also eine Rolle spielen in unserem Sichtbarkeitsindex. Das Suchvolumen über den AdWords Keyword Planner schließen wir aus den oben genannten Gründen aus, die einzige Quelle, die uns bleibt, sind die Impressions aus der Webmaster Console. Sobald wir auf der ersten Seite sind und weit genug oben (ich bin nicht sicher, ob es als Impression zählt, wenn man auf Platz 10 ist und nie im sichtbaren Bereich war), sollten wir die Anzahl der Impressions aus der Webmaster Console nutzen können, und das sogar auf Tagesbasis!

Kleiner Health-Check für das Keyword “Scalable Capital Erfahrungen” (AdWords / reale Daten aus der Webmaster Console):

  • 2400 / 1795 (September, aber nur halber Monat)

  • 5400 / 5438 (Oktober)

  • 1000 / 1789 (November)

Für September und Oktober sieht das gut aus, nur im November ist es etwas seltsam, dass ich knapp 80% mehr Impressions hatte als es angeblich Suchen gab. Irgendetwas muß ausserdem im September/Oktober passiert sein, dass Scalable Capital plötzlich so viele Suchen hatte. Tatsächlich war das auch im Traffic auf meiner Seite zu sehen. Den ersten Punkt kriegen wir nicht geklärt und akzeptieren, dass auch die AdWords-Zahlen nicht perfekt sind.

Wie unterschiedlich die Sichtbarkeits-Indices sind je nach Gewichtung, wird in den folgenden Abbildungen deutlich:

  • Im einfachsten Modell wird einfach nur 11 minus Position gerechnet, alles oberhalb von (größer als) Position 10 bekommt dann 1 Punkt. Pro Ergebnis werden die Daten für jeden Tag zusammengerechnet. Dieses Modell hat den Nachteil, dass ich ganz schnell nach oben klettern kann, selbst wenn ich nur Begriffe auf Platz 1 bin, die nur einmal im Monat gesucht werden.
  • Im zweiten Modell wird das gleiche Vorgehen gewählt, nur dass hier der Wert mit den Impressions multipliziert wird
  • Im dritten Modell wird die durchschnittliche CTR auf der SERP aus dem zweiten Teil dieser Serie mit den Impressions multipliziert.

Schaut man sich nun den tatsächlichen Traffic an, so sieht man, dass das 3. Modell dem Traffic schon sehr nahe kommt. Die Ausschläge im echten Traffic sind nicht ganz so stark wie im Index, und zum Schluss bekomme ich nicht so viel Traffic, allerdings kann das daran liegen, dass die tatsächliche CTR unter der erwarteten CTR liegt.

Alternativer Ansatz mit der Webmaster Console

Wenn man sich die Plots anschaut, dann wird aber klar, dass dieser Ansatz mit dem Impressions auf Tagesbasis wenig Sinn ergibt. Denn wenn die Kurve nach unten geht, dann bedeutet das nicht, dass ich auch etwas tun kann, denn eventuell wird nun mal einfach nur weniger nach diesem Thema gesucht und meine Rankings haben sich gar nicht geändert (normalerweise schreibt man ja nur darüber, was funktioniert, aber ich finde auch die Misserfolge spannend, denn daraus kann man eine Menge lernen :-)). Genau deswegen wird Sistrix wohl auch die saisonalen Schwankungen rausrechnen.

Alternativ könnte man einfach den Durchschnitt über alle Impression-Daten eines Keyword-Landing-Page-Paares bilden und diesen Durchschnitt zur Berechnung nutzen, wieder mit der gewichteten CTR pro Position. Das Gute an diesem Ansatz ist, dass sich saisonale oder temporäre Ausschläge ausgleichen. Geplottet sieht das wie folgt aus:

Dieser Plot sieht dem ersten Plot sehr ähnlich, was aber nicht bedeutet, dass das immer so sein muss. Doch wenn ich mir die Sistrix-Werte anschaue (auch wenn ich da auf einem ganz niedrigen Niveau unterwegs bin), dann sieht das schon sehr ähnlich aus.

Von Daten zur Handlungsrelevanz

Nun haben wir einen Plot, der uns die gewichtete Entwicklung unserer Rankings anzeigt, aber was machen wir nun damit? So richtig “actionable” ist das nicht. Spannend wird es erst, wenn wir uns zusätzlich anschauen, welche Rankings sich am meisten verändert und einen Einfluss auf unseren Sichtbarkeitsindex haben. Dazu nehmen wir uns wieder für jedes Keyword-Landing-Page-Paar zunächst das minimalste Ranking (minimal weil niedrig, und niedriger als Platz 1 gehts nicht) und dann das aktuelle Ranking. Zum Schluss berechnen wir das Delta und sortieren danach:

Actionable SEO Reporting
Actionable SEO Reporting

Je höher das Delta, desto größer ist sozusagen der Verlust an Ranking-Plätzen. Und desto größer der Handlungsbedarf, vorausgesetzt, dass das Keyword auch wirklich interessant ist. In meinem Beispiel fände ich es zum Beispiel nicht schlecht für “seo monitoring” zu ranken, schließlich sind die Artikel aus dieser Reihe relevant dafür. Man könnte nun noch gewichten anhand der Impressions oder dem Sichtbarkeitsindex, den wir vorher gewählt haben:

Das sieht schon spannender aus: Tatsächlich sind einige Suchanfragen oben (nach “Actionability” sortiert), die ich ganz interessant finde. Und nun könnte man das mit den Daten aus dem zweiten Teil verbinden und ein Dashboard bauen… dazu mehr im vierten Teil 🙂

Filed under: Data Science, SEOTagged with: , ,

2 Comments

  1. […] Der letzte Teil meiner Präsentation von der SEO Campixx war eine Kurzzusammenfassung meiner Artikelserie über ein SEO-Reporting mit R und AWS (insbesondere der Teil über das handlungsrelevante Analysen und ein Reporting). […]

  2. […] Lobhudelei. Worum gehts? Wie schon in dem Post über keywordtools.io oder den am Rande erwähnten Ungenauigkeiten in den Google AdWords Keyword Planner-Daten beschrieben, ist es eine Herausforderung, verlässliche Daten über das Suchvolumen von Keywords […]


Add a Comment

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

Comment *

Name *
Email *
Website